4(2200) Funktionsgrenzwerte und stetige Funktionen

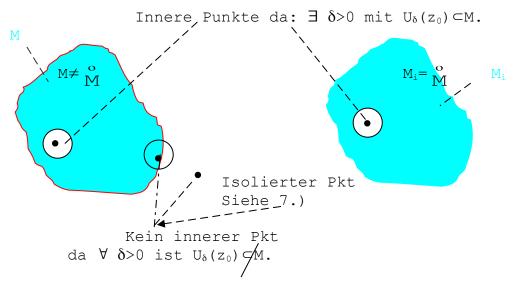
4.1(2200) Topologische Begriffe

 $\begin{array}{lll} \textbf{D4.1.1} \ (2200) & \textbf{K} \ \text{K\"{o}}\text{rper, zum Bsp } \textbf{R} \ \text{oder } \textbf{C,} \ \text{M} \subseteq \textbf{K,} \ \text{M} \neq \emptyset \,. \\ & \text{F\"{u}}\text{r} \ z \in \textbf{K} \ \text{und} \ \delta > 0 \ \text{sei} \\ & \text{U}_{\delta} \left(z_{0}\right) := & \left\{z \in \textbf{K} \middle| \left|z - z_{0}\right| < \delta\right\} = & \left(z_{0} - \delta, z_{0} + \delta\right) = \delta - \text{Umgebung von } z_{0} \ \text{in } \textbf{K} \,. \\ & \text{U}_{\delta} \left(z_{0}\right) := & \text{U}_{\delta} \left(z_{0}\right) \setminus \left\{z_{0}\right\} = & \left\{z \in \textbf{K} \middle| 0 < \left|z - z_{0}\right| < \delta\right\} \,. \end{array}$

- 1.) $z_0 \in M$ heißt innerer Punkt von $M: \Leftrightarrow \exists \delta > 0$ mit $U_{\delta}(z_0) \subset M$.
 - ullet ullet o sei die Menge aller inneren Punkte von M
 - \bullet \bullet \bullet $\overset{\mathrm{o}}{\mathsf{M}}$ =offener Kern von M.
- \bullet \bullet \bullet M heißt offen: \Leftrightarrow M= $_{M}^{O}$.

Andere Formulierung:

Eine Teilmenge $M \subseteq K$ heißt offen, wenn es zu jedem $\xi \in O$ eine ϵ -Umgebung $U_{\epsilon}(\xi)$ gibt mit $U_{\epsilon}(\xi) \subseteq M$. offene Intervalle, Endpunkte gehören nicht dazu, da a&b $\notin M \Rightarrow U_{\epsilon}(a\&b) \not\subseteq M$.



2.) Ist X \subseteq K, so heißt ein O \subseteq X X-offen, (bzw relativ offen bzgl X), wenn es zu jedem $\xi\in$ O ein U $_{\epsilon}(\xi)$ gibt, sodass U $_{\epsilon}(\xi)\cap$ X \subseteq O gilt. # irgend ein $\epsilon>$ 0

Achtung: In 2.4 Wird der Begriff Häufungswert behandelt. Dieser gehört zu Folgen (siehe (2002)).

Der Häufungspunkt (HP) gehört zu Mengen

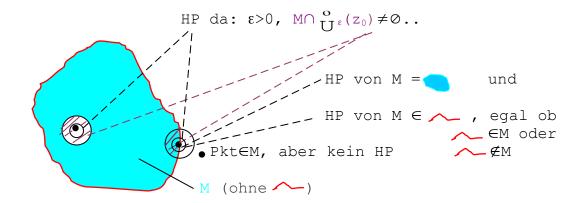
3.) $z_0 \in K$ heißt Häufungspunkt (HP) von M: $\Leftrightarrow \forall \epsilon > 0$ ist M $\cap \bigcup_{i=0}^{\infty} \epsilon(z_0) \neq \emptyset$. Andere Formulierungen:

Ein Punkt z_0 heißt Häufungspunkt (HP) einer Menge $D \subset K$, falls in jeder ϵ -Umgebung $U_\epsilon(z_0)$ unendlich viele Punkte von D liegen. Bem:Äquivalent dazu:

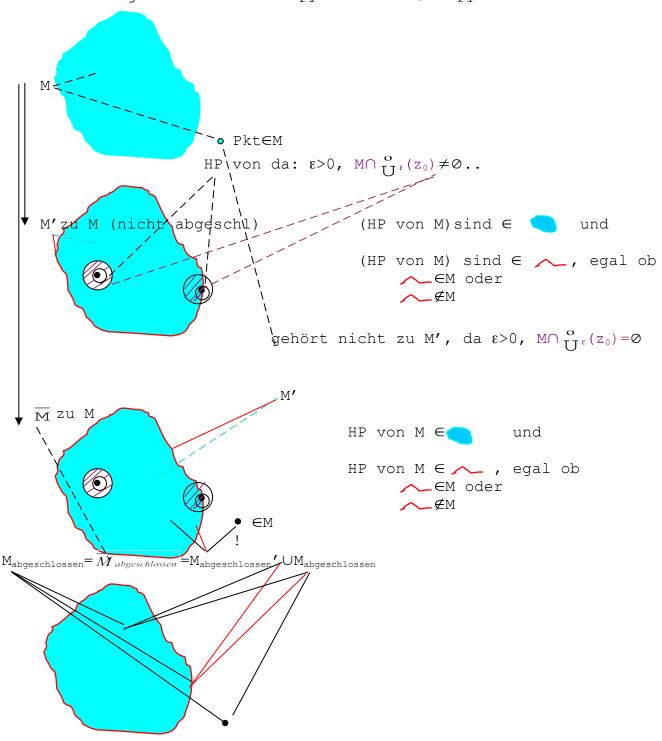
1.)Mit $_{\text{IJ}}^{\circ}(z_0):=U_{\epsilon}(z_0)\setminus\{z_0\}$ (sog punktierte Umgebung von z_0)

gilt ${\overset{\circ}{\cup}}_{\epsilon}(z_0) \cap D \neq \emptyset \quad \forall \ \epsilon > 0$

2.) \exists (z_n) mit z_n \in $D\setminus\{z_0\}$, sodass gilt: $z_n \stackrel{n\to\infty}{\longrightarrow} z_0$ (siehe auch S 4.1.1 4.)



4.)M' sei die Menge aller HP von M und $\overline{M}:=M\cup M'$ die abgeschlossene Hülle von M. M heißt abgeschlossen: \Leftrightarrow M= \overline{M} \Leftrightarrow M' \subset M. # M= \overline{M} =M \cup M' \Leftrightarrow M' \subset M



Andere Formulierung

4*.)M abgeschlossen \Leftrightarrow Der Grenzwert jeder konvergenten Folge aus M liegt wieder in M

(
$$\forall$$
 (x_n) $_{n=1}^{\infty}$, $x_n \in M$, $\lim_{n \to \infty} x_n = x$: $x \in M$)

4.)
$$\Longrightarrow$$
 $54.1.1 \ 4.)$ sieheSeite 2208 $4 \times .)$

- 5.)M heißt kompakt ⇔ M ist abgeschlossen und beschränkt Andere Formulierung: 5*.) M kompakt \Leftrightarrow Jede Folge aus M besitzt eine konvergente Teilfolge, deren Grenzwert wieder zu M gehört # Wozu Betrachtung von Teilfolgen? # $(z_n)_{n=1}^{\infty}$, $z_n \in M$ können sich beliebigen Werten von M # (vieleicht sogar allen) beliebig nahe nähern, aber \exists eine # konvergente Teilfolge (d.h. die sich nur einem Wert von M annähert) # deren Grenzwert wieder zu M gehört.....Richtig 6.) z_0 ∈**K** heißt Randpunkt von M:⇔ $\forall \epsilon > 0$ ist M∩U $_{\epsilon}(z_0) \neq \emptyset$ und $K\backslash M) \cap U_{\epsilon}(z_0) \neq \emptyset$. 7.) $z_0 \in M$ heißt isolierter Punkt von $M: \Leftrightarrow \exists \delta > 0$ mit $M \cap \bigcap_{T \ni \delta}^{O}(z_0) = \emptyset$. Andere Formulierung: $z_0 \in D$ heißt isolierter Punkt von M, falls es ein $\rho > 0$ gibt derart, daß für alle anderen Punkte z $\in D\setminus \{z_0\}$ gilt $|z-z_0|\geq \rho$. # Ist ein isolierter Punkt ein innerer Punkt? # 1.) $z_0 \in M$ heißt innerer Punkt von $M: \Leftrightarrow \exists \delta > 0$ mit $U_{\delta}(z_0) \subset M$. z_0 ist isolierter Punkt $\Rightarrow \exists \delta > 0$ mit $M \cap \bigcup_{i=0}^{\infty} \delta(z_0) = \emptyset \Rightarrow 0$ $\forall \delta > 0 \exists z_{\not\in M} \in {}_{0}^{\circ}(z_{0}) \Rightarrow \forall \delta > 0 U_{\delta}(z_{0}) \not\models M$ $8.) \infty (-\infty)$ ist ein uneigentlicher HP von M, falls eine Folge (z_n) aus M existiert mit $\mid z_n \mid \stackrel{n \to \infty}{\longrightarrow} \infty \, (-\infty)$. **S4.1.1** (2205) 1.) Für $M \subset R$ oder $M \subset C$ gilt a) $\stackrel{o}{M} = \bigcup_{\text{\tiny O} \subseteq M} \text{\tiny O} = \text{\tiny Vereinigung aller offenen Teilmengen von M}$ b) $\overline{M} = \bigcap_{M \subseteq \mathbb{R}} A$ =Durchschnitt aller geschlossenen Obermengen von M. 2.) $M \subset R$ ist offen $\Leftrightarrow R \setminus M$ ist abgeschlossen \emptyset und R sind offen und abgeschlossen. $M \subset C$ ist offen $\Leftrightarrow C \setminus M$ ist abgeschlossen, \oslash und C sind offen und abgeschlossen.
 - 3.) $M_1, \dots M_n$ offen $\Rightarrow \bigcap_{j=1}^n M_j$ offen

- • $M_1, \dots M_n$ abgeschlossen $\Rightarrow \bigcup_{j=1}^n M_j$ abgeschlossen.
- ullet ullet I beliebige Indexmenge und M_i offen \forall $i{\in}I$ \Rightarrow $\bigcup_{i{\in}I}$ M_i offen.
- ullet ullet ullet ullet ullet bel. Indexmenge und M_i abgeschlossen \forall $i \in I \Rightarrow$

 M_i abgeschlossen.

Bem:Die Vor I≠Ø wurde nur gemacht, da ___ nicht definiert ist

4.) x_0 ∈R ist HP von M⊂R \Leftrightarrow ∃ eine Folge (x_n) ⊂M\ $\{x_0\}$ mit $x_n \xrightarrow[n \to \infty]{} x_0$. $z_0 {\in} \textbf{C} \text{ ist HP von } \texttt{M} {\subset} \textbf{C} \Leftrightarrow \exists \text{ eine Folge } (z_n) {\subset} \texttt{M} \backslash \{z_0\} \text{ mit } z_n \underset{n \to \infty}{\longrightarrow} z_0.$

4.2(2300) Funktionsgrenzwerte, Konvergenz von Funktionenfolgen

D4.2.1(2300) Sei M \subset R, $x_0 \in M'$ und $f:M \to R$.

1.) f(x) konvergiert gegen $a \in \mathbb{R}$ für $x \rightarrow x_0 : \Leftrightarrow$

 $\forall~\epsilon{>}0~\exists~\delta_{\epsilon}{>}0~\text{mit}~f(x){\in}U_{\epsilon}(a)~\forall~x{\in}M{\cap}\overset{\circ}{U_{\delta}}~(x_{\scriptscriptstyle 0})~\text{oder auch}$

 $\forall \ \epsilon {>} \text{0} \ \exists \ \delta_{\epsilon} {>} \text{0:} \ |\text{f(x)-a}| {<} \epsilon \ \forall \ \text{x} {\in} \text{M mit } \text{0} {<} |\text{x} {-} \text{x}_{\text{0}}| {<} \delta_{\epsilon}.$

Schreibweise: $\lim_{x \to x_0} f(x) = a$ oder $f(x) \xrightarrow[x \to x_0]{} a$.

2.) f(x) konvergiert einseitig von rechts (von links) gegen a \in R für $x \rightarrow x_{0+} (x \rightarrow x_{0-}) : \Leftrightarrow \forall \epsilon > 0 \;\exists \; \delta > 0 : |f(x) - a| < \epsilon \; \forall \; x \in M \; \text{mit} \; x_0 < x < x_0 + \delta \; (x_0 - \delta < x < x_0) \;.$

Schreibweise: $\lim_{x \to x_{0+}} f(x) = a$, $\lim_{x \to x_{0-}} f(x) = a$.

Andere Formulierung:

f: $D \rightarrow R$, x_0 Häufungspunkt aus D.

Einseitiger Limes: $\lim_{x \to x_0^{\pm}} f(x) = y_0 \Leftrightarrow$

falls x_0 HP von $D \cap (x_0, (-,) \infty)$ und falls

 \forall Folgen (x_n) aus $D \cap (x_0, (-) \infty)$ mit $x_n \rightarrow x_0$ gilt, ist $\lim_{n \to \infty} f(x_n) = y_0$ rechtsseitiger (linksseitiger) Limes von f(x), $x \rightarrow x_0$

- 3.) $\lim_{x \to \infty} f(x) = a \in R$ (bzw. $\lim_{x \to -\infty} f(x) = a \in R$):
 - \Leftrightarrow \forall $\epsilon > 0$ \exists c>0 mit $|f(x)-a| < \epsilon$ \forall x>c (bzw \forall x<-c).
- 4.) (bestimmte Divergenz) $x_0 \in \mathbb{R}$, $\lim_{x \to x_0} f(x) = \infty$ (bzw. $-\infty$): \Leftrightarrow

 \forall c>0 \exists δ >0 mit f(x)>c(bzw. f(x)<-c) \forall x \in M \cap $_{UJ}^{O}{}_{\delta}(x_{0})$

Analog ist $\lim_{x\to\infty} f(x) = \infty$ (bzw.=- ∞) und $\lim_{x\to-\infty} f(x) = \infty$ (- ∞) definiert

5.) Seien $f,g:M \rightarrow R$ und $x_0 \in M'$ gegeben.

f(x) = O(g(x)) für $x \rightarrow x_0$:

 $\exists c>0 \& \exists \delta>0 \text{ mit } |f(x)| \leq c|g(x)| \forall x \in (M \cap \bigcup_{i \in \delta}^{c} (x_0)).$

f(x) = 0 (g(x)) für $x \rightarrow x_0$:

 $\forall \ \ \ \dot{\epsilon} > 0 \ \ \exists \ \ \delta > 0 \ \ \text{mit} \ \ | \ \ f(x) \ | \le \mathcal{E} \ | \ \ g(x) \ | \ \ \forall \ \ x \in \mathbb{M} \cap \ \underset{IJ}{\circ}_{\delta}(x_0) \ .$

Analog bei $x\to\infty$, $x\to -\infty$.

Bem:Analog zum Bew des Stzes über die Folgenstetigkeit kann man zeigen, dass genau dann $\lim_{x \to a_+} f(x) = y$ ist, wenn für alle Folgen (x_n) mit $x_n > a$, welche gegen a konvergieren, die Folge $(f(x_n))$ gegen y konvergiert. Analoge Aussagen gelten in allen anderen Fällen, inklusive der Fälle $y = \infty$ bzw $y = -\infty$.

Andere Formulierungen:

• Geg a,b $\in \mathbb{R} = (\mathbb{R} \cup \{\infty, -\infty\})$, a<b, f:(a,b) $\to \mathbb{R}$ f konvergiert gegen y $\in \mathbb{R}$, wenn x von oben gegen a strebt, falls: $\forall \mathcal{E} > 0 \exists c \in (a,b) \forall x \in (a,c): |f(x)-y| < \mathcal{E} \text{ gilt.}$

Schreibweise: $\lim_{x \to c_+} f(x) = y$.

Analog

f konvergiert gegen ein $y \in \mathbb{R}$, wenn x von unten gegen b strebt, falls: $\forall \mathcal{E} > 0 \exists c \in (a,b) \forall x \in (c,b) : |f(x)-y| < \mathcal{E}$ gilt.

Schreibweise: $\lim_{x \to c_{-}} f(x) = y$

- • $\lim_{x \to c} f(x) = y$ mit $c \in (a,b) \Leftrightarrow \exists \lim_{x \to c_+} f(x) \in \lim_{x \to c_+} f(x)$, $\lim_{x \to c_+} f(x) = \lim_{x \to c_+} f(x) = y$
- $\bullet \bullet \bullet c \in (a,b), \exists \lim_{x \to c_{+}} f(x) \& \lim_{x \to c_{-}} f(x), k \in \mathbb{R}, \lim_{x \to c_{+}} f(x), \lim_{x \to c_{+}} f(x) \leq k,$ $\lim_{x \to c_{+}} f(x) \neq \lim_{x \to c_{-}} f(x),$

dann heißen c Sprungstelle von f und $\lim_{x \to c_+} f(x) - \lim_{x \to c_-} f(x)$ Sprunghöhe von f an dieser Stelle.

ullet ullet f für a \in R (zu (a,b)) definiert, $\exists \lim_{x \to c_+} f(x)$ dann ist die Sprunghöhe

als $\lim_{x \to a_{+}} f(x) - f(a)$ definiert.

Analoge ist eine Sprungstelle bzw -höhe bei b definiert

D4.2.1' (2302) (komplexe Zahlen, Körper K) Sei $D \subset K$, $z_0 \in D'$, d.h. z_0 ist HP, $f: D \to K$ gegeben.

1.)f(z) konvergiert gegen $w_0 \in K$ für $z \to z_0$, falls ein $w_0 \in K$ existiert, sodass gilt:

 $\forall \ \epsilon > 0 \ \exists \ \delta_{\epsilon} > 0 \ \text{mit} \ |f(z) - w_0| < \epsilon \ \forall \ z \in (D \cap \overset{\circ}{U}_{\delta} \ (z_0)).$

Schreibweise: $\lim_{z \to z_0} f(z) = w_0$ oder $f(z) \xrightarrow[z \to z_0]{} w_0$.

2.) Für f: $D \rightarrow K$, $z_0 \in D'$ gilt $\lim_{z \to z_0} |f(z)| = \infty : \Leftrightarrow$

 \forall c>0 \exists δ >0 mit |f(z)|>c \forall z \in M \cap $_{IJ}^{\circ}_{\delta}(z_{0})$ (Bestimmte Divergenz).

3.)Seien f,g: $D \rightarrow K$ und $z_0 \in D'$ gegeben.

f(z) = O(g(z)) für $z \rightarrow z_0$:

 \exists c>0 und \exists δ >0 mit $|f(z)| \le c|g(z)| \forall z \in D \cap {\circ}_{II\delta}(z_0)$.

f(z) = o(g(z)) für $z \rightarrow z_0$:

 $\forall~\epsilon{>}0~\exists~\delta{>}0~\text{mit}~|f(z)|{\leq}\epsilon|g(z)|~\forall~z{\in}D{\cap}^{\circ}_{\text{IJ}\,\delta}(z_{\scriptscriptstyle{0}})\;\text{.}$

Bem: f(z) ist unabhängig von $f(z_0)$, falls überhaupt f(z) für $z=z_0$ definiert ist.

D4.2.2(2303) Monotone Funktion

Sei $I \subset \mathbb{R}$ ein Intervall. $f:I \to \mathbb{R}$ heißt monoton wachsend(fallend) auf I: $\Leftrightarrow \forall x_1, x_2 \in I \text{ mit } x_1 \leq x_2 \text{ gilt } f(x_1) \leq f(x_2) (f(x_1) \geq f(x_2)) (f_{\pi}, y_1)$. $f:I \rightarrow R$ heißt streng monoton wachsend (fallend) auf $I:\Leftrightarrow$ $\forall x_1, x_2 \in I \text{ mit } x_1 < x_2 \text{ gilt } f(x_1) < f(x_2) \quad (f(x_1) > f(x_2)) \quad (f \uparrow, \downarrow)$ Ist f weder monoton wachsend noch monoton fallend, so sagen wir, f ist nicht monoton.

D4.2.3(2304) Sei $M \subset R$ oder $M \subset C$. $f:M \to R$ bzw $f:M \to C$ heißt beschränkt auf $M:\Leftrightarrow \exists c>0 \text{ mit } |f(z)| \leq c \forall z \in M.$

S4.2.1(2304) Konvergenzkriterien für Funktionen

• Folgenkriterium

Vor:Sei $M \subset R$, $x_0 \in M'$, $f:M \to R$, (C)

 $\text{Beh: } \lim_{x\to x_0} f(z) = a \iff \forall \text{ Folgen } (z_n)_{n\in N} \subset M\setminus \{z_0\} \text{ mit } x_n \underset{n\to \infty}{\longrightarrow} x_0 \text{ gilt } \lim_{n\to \infty} f(z_n) = a.$

Andere Formulierung:

Vor: $D \rightarrow K$ und ein HP $z_0 \in D$ gegeben.

 $\text{Beh: } \lim_{z \to z_0} f(z) = w_0 \iff f(z_n) \overset{n \to \infty}{\longrightarrow} w_0 \ \forall \ (z_n) \ \text{mit } z_n \in D \setminus \{z_0\} \ \forall \ n \ \& \ z_n \overset{n \to \infty}{\longrightarrow} z_0$

Bem:1.) Beachte $z_n \neq z_0 \forall n$ (d.h. w_0 hängt nicht von $f(z_0)$ ab.

2.) Falls $z_0 \in D$, so gilt: $\lim_{z \to z_0} f(z) = f(z_0) \Leftrightarrow$ \forall Folgen (z_n) mit $z_n \in D$ \forall n & $z_n \xrightarrow{n \to \infty} z_0$ gilt: $f(z_n)$ konvergiert.

3.) $\exists \lim_{x \to x_0} f(x) \in R \Leftrightarrow$

 $\forall \ \epsilon > 0 \ \exists \ \delta > 0 \ \text{mit} \ |f(x_1) - f(x_2)| < \epsilon \ \forall \ x_1, x_2 \in \mathbb{M} \cap \bigcap_{I \mid \delta}^{O}(x_0). \text{(Cauchy-Krit)}$

Andere Formulierungen:

Es seien eine Funktion $f:D \rightarrow K$ und ein HP z_0 von D gegeben.

Dann gilt: $\lim_{z \to z_0} f(z)$ existiert \Leftrightarrow

 $\forall \ \epsilon > 0 \ \exists \ \delta_{(\epsilon_0)} > 0 \colon | \ f(z) - f(z') \ | < \epsilon \ \forall \ z \text{, } z' \in \overset{\circ}{U_{\delta}} \ (z_0) \cap D \text{.}$

● ● Cauchy-Kriterium

 $\exists \ \underset{\boldsymbol{x} \to \boldsymbol{x}_0}{\text{lim}} \, f(\boldsymbol{x}) \in R \ \Leftrightarrow \ \forall \ \epsilon > 0 \ \exists \ \delta > 0 \ \text{mit} \ | \, f(\boldsymbol{x}_1) - f(\boldsymbol{x}_2) \, | < \epsilon \ \forall \ \boldsymbol{x}_1, \boldsymbol{x}_2 \in M \cap \underset{UJ}{\overset{O}{}}_{\delta}(\boldsymbol{x}_0) \; .$

Andere Formulierungen:

Es seien eine Funktion $f:D \rightarrow K$ und ein HP z_0 von D gegeben.

Dann gilt: $\lim_{z \to z_0} f(z)$ existiert \Leftrightarrow

 $\forall \ \epsilon > 0 \ \exists \ \delta_{(\epsilon_0)} > 0 \colon | \, f(z) - f(z') \, | < \epsilon \ \forall \ z, \ z' \in \mathop{\mathbb{U}}_{\delta}^{\circ} \ (z_0) \cap D \, .$

S4.2.2(2310) Grenzwertregeln

Vor: Geg. f, g:D \rightarrow K und HP z₀

- 1.) Beh: Existieren $\lim_{z\to z_0} f(z) = w_0 \& \lim_{z\to z_0} g(z) = w_1$, so existieren folgende Limites und es gilt:
 - (.) $\lim_{z \to z_0} (\alpha f(z) + \beta g(z)) = \alpha w_0 + \beta w_1 (\alpha, \beta \in K)$ (.) $\lim_{z \to z_0} f(z) g(z) = w_0 w_1$

(...)
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_0}{w_1}$$
 falls $w_1 \neq 0$

- 2.) $\lim_{x \to x_0} f(x) = a$ und $a < \alpha (> \alpha \text{ bzw } \neq \alpha) \Rightarrow \exists \delta > 0: f(x) < \alpha (> \alpha, \neq \alpha) \quad \forall x \in M \cap \bigcup_{i=0}^{\infty} \delta(x_i)$.
 - 3.) Ist M=I ein Intervall und \exists $\delta>0$ sodass f auf I \cap ($x_0-\delta$, x_0) bzw I \cap (x_0 , $x_0+\delta$) monoton und beschränkt ist, so \exists $\lim_{x\to x_0} f(x)$ bzw $\lim_{x\to x_0+} f(x)$.
- 4.) Seien M, $H \subset R$, $f: M \to H$, $h: H \to R$, $z_0 \in M'$.
 - (●) Sei $y_0 := \lim_{z \to z_0} f(z)$, dann gilt $y_0 \in \overline{H}$.
 - (ullet ullet) Falls $\lim_{{\rm y} o {\rm y}_0} {\rm h} \, ({\rm y}) = {\rm c}$ existient, so $\exists \lim_{z o z_0} {\rm h} \, ({\rm f} \, ({\rm z})) = {\rm c}$
- Bem:S4.2.2 1.) gilt analog für M \subset C, f,g:M \rightarrow C, H \subset C, h:H \rightarrow C Die Grenzwertregeln gelten auch bei uneigentlichen HP mit eigentlichen Grenzwerten.

Andere Formulierungen:

Vor: f: $D \rightarrow D_1 \subset K$, z_0 HP von D: $\lim_{z \rightarrow z_0} f(z) = w_0 \in D_1$

g: $D_1 \rightarrow K$: $\lim_{z \to z_0} g(z) = g(w_0) D_1$

Beh: $\lim_{z \to z_0} g(f(z)) = g(w_0) = \lim_{w \to w_0} g(w)$

S4.2.3(2320)

Sei $f:I \to \mathbb{R}$ monoton wachsend (fallend) und beschränkt, dann existiert $\lim_{x \to x_0^{\pm}} f(x) \quad \forall \text{ HP von } I \cap (-\infty, x_0) \quad (I \cap (x_0, \infty))$

D4.2.4(2350) (Körper:K, z.B. R, C)

- Eine Funktionenfolge ist eine Folge f_1, f_2, \ldots von Funktionen $f_i \colon K \!\! \to \!\! K$, Definitions (D $\subset \!\! K$) und Zielmengen (Z $\subset \!\! K$) können auch andere Mengen sein, z.B. Intervalle, müssen jedoch für alle f_i dieselben sein: $f \colon DxN \!\! \to \!\! Z$, $(x,n) \mapsto f_n(z)$
- Funktionenfolge $(f_n)_{n=1}^{\infty}$ heißt punktweise konvgt gegen eine Funktion $f: D \to K$, wenn gilt $\forall z \in D \ \forall \epsilon > 0 \ \exists \ N_{(\epsilon,z)}: \ |f_n(z)-f(z)| < \epsilon \ \forall \ n > N_{(\epsilon,z)}$ Schreibweise: $f(z)=\lim_{n\to\infty} \ f_n(z) \ \forall \ z \in D$, diese $f:D \to K$ heißt Grenzfunktion Für punktweise konvergente $(f_n)_{n=1}^{\infty}$ definiert $f(z): \ f(z)=\lim_{n\to\infty} \ f_n(z) \ \forall \ z \in D$ die sogenannte Grenzfunktion

Andere Formulierung:

Die Funktionenfolge (f_n) heißt auf D punktweise konvergent, falls für jedes $z \in D$ die Folge $(f_n(z))$ konvergent ist. Ist dies der Fall, so heißt $f:D\to K$, mit $f(z)=\lim_{n\to\infty} f_n(z) \ \forall \ z\in D$, die Grenzfunktion der Folge. $\texttt{Bsp:D=[0,1], } \ f_{n}\left(x\right) = x^{n}, \ f_{n}\left(x\right) = x^{n} \ \Rightarrow \ f_{n} \ \texttt{konvergiert punktweise gegen}$

Bew: $x \in [0,1) \Rightarrow |f_n(x) - f(x)| < \epsilon \Leftrightarrow x^n < \epsilon \Leftrightarrow n^* \underbrace{\ln x}_{< 1} < \ln \epsilon \Leftrightarrow n > \frac{\ln \epsilon}{\ln x} \xrightarrow[Wahl]{}$ $N_{(\varepsilon,x)} = \left[\frac{\ln \varepsilon}{\ln x} \right] + 1$

ullet Die Funktionenfolge (f_n) heißt auf D gleichmäßig konvergent, falls sie punktweise konvergiert (gegen die Grenzfunktion f) und falls weiter gilt: $\forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall \ n \ge N \ \forall z \in \mathbb{D}$: $|f_n(z) - f(z)| < \varepsilon$.

Andere Formulierung frei nach Uni Saarbrücken (ohne Forderung der punktweisen Konvergenz ...aber f(x) muß existieren)

Die Funktionenfolge (f_n) $_{\text{n}=1}^{\infty}$ heißt auf D gleichmäßig konvergent gegen eine Grenzfunktion f: $\forall \ \epsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall \ n \geq N \ \forall z \in \mathbb{D}$: $|f_n(z) - f(z)| < \epsilon$. Äquivalente andere Formulierung frei nach Wikipedia

 $(f_n)_{n=1}^{\infty}$ konvergiert genau dann gleichmäßig gegen eine f wenn $\lim_{n\to\infty}\sup_{z\in D}\mid \texttt{f}_{\texttt{n}}\left(\texttt{z}\right)-\texttt{f}\left(\texttt{z}\right)\mid =0$

Bem:1.) Gleichmäßige Konvergenz ⇒ Konvergenz Gleichmäßige Konvergenz ← Konvergenz

2.) Bei glm Konvergenz gilt $\forall \epsilon > 0 \exists n_{1(\epsilon)} : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon \forall n > n_{1(\epsilon)}$ d.h. $\sup_{x \in I} |f_n(x) - f(x)| \xrightarrow[n \to \infty]{} 0$ (I beliebiges Intervall) $\text{Zu } \epsilon > 0 \ \exists \ \mathbf{x_n} \colon \underbrace{\sup_{\mathbf{x} \in I} | \mathbf{f_n}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) | \leq | \mathbf{f_n}(\mathbf{x_n}) - \mathbf{f}(\mathbf{x_n}) | + \frac{\mathcal{E}}{2} \leq \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \epsilon \ \forall \ \mathbf{n} > n_{0(\frac{\mathcal{E}}{2})}$

D4.2.5 (2355)

- Geg beliebige Menge $D \subset K$, sowie Funktionenfolge $g_k: D \to K \ \forall \ k \in \mathbb{N}$. Dann nennen wir $\sum_{k=1}^{\infty}$ g_k eine Funktionenreihe auf D. Bsp Potenzreihen

ist dann durch $f(z) = \sum_{k=1}^{\infty} g_k(z) \quad \forall x \in D \text{ gegeben.}$

Funktionenreihe \sum^{∞} g_k heißt auf D gleichmäßig konvergent, falls sie punktweise konvergiert (gegen die Grenzfunktion f) und $\text{falls weiter gilt: } \forall \text{ } \epsilon > 0 \text{ } \exists \text{ } N \in \textbf{R}_{+} \text{ } \forall \text{ } n \in \textbf{N} \text{ } \forall \text{ } z \in \textbf{D:} n \geq N \text{ } \Rightarrow \text{ } | \sum_{k=1}^{\infty} |g_{k}(z) - f(z)| < \epsilon.$

Also ist die gleichmäßige Konvergenz der Funktionenreihe \sum g $_{\mathtt{k}}$

äquivalent mit der gleichmäßigen Konvergenz der Folge ihrer Partialsummenfolge

Andere Formulierung:

Funktionenreihe $\sum_{k=1}^{\infty}$ f_k konvergiert gleichmäßig auf X gegen S:

$$\lim_{n\to\infty}\sum_{k=1}^{n} f_k(z) = S \quad \forall x \in X \quad (S_n := f_1 + f_2 + ... f_n \underset{n\to\infty}{\longrightarrow} S)$$

Andere Formulierung

 $(\sum_{k=1}^n f_k(z))_{n=1}^\infty$, f_k : DoK heißt gleichmäßig konvergent gegen f: DoK wenn die

Folge der Partialsummen gleichmäßig gegen f konvergiert, d.h.

$$\forall \ \epsilon > 0 \ \exists \ \mathrm{N} \in \mathbb{N} \ \forall \ \mathrm{n} \geq \mathrm{N} \ \forall \ \mathrm{x} \in \mathrm{D} \colon \mid \sum_{k=1}^{n} \ \mathrm{f}_{k}(\mathrm{z}) - \mathrm{f}(\mathrm{z}) \mid < \epsilon$$

Bem: ● Gleichmäßige Konvergenz ⇒ Konvergenz Gleichmäßige Konvergenz ← Konvergenz

• Bei glm Konvergenz gilt $\forall \ \epsilon > 0 \ \exists \ n_{1(\epsilon)} : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon \quad \forall \ n > n_{1(\epsilon)}$ d.h. $\sup_{x \in I} |f_n(x) - f(x)| \underset{n \to \infty}{\longrightarrow} 0$

S4.2.4 (2356)

Funktionenfolge Cauchy-Kriterium für gleichmäßige Konvergenz Vor:Sei $D \subset K$ (z.B R, C) $f_n:D \to K$ für $n \in N$ gegeben.

Beh: $(f_n(z))_{n=1}^{\infty}$ konvergiert gleichmäßig auf D (gegen Funktion $f(z) := D \rightarrow C$) $\Leftrightarrow \forall \mathcal{E} > 0 \exists n_0 = n_0(\epsilon)$ (unabhängig von $z \in M$) mit $|f_n(z) - f_m(z)| < \epsilon \forall n, m \ge n_0(\epsilon)$

Bem: Eine Funktionenreihe konvergiert gleichmäßig auf I \Leftrightarrow

$$\forall \ \epsilon > 0 \ \exists \ n_1(\epsilon) \in \mathbb{N} : |\sum_{k=n}^{n+p} \ f_k(x)| < \epsilon \ \forall \ n \ge n_1(\epsilon) \ \forall \ p \ge 1, \ \forall \ x \in \mathbb{I}$$

ullet Die Funktionenreihe $\sum_{k=1}^{\infty}$ g $_k$ ist genau dann auf D gleichmäßig konvergent,

$$\text{wenn } \forall \ \mathcal{E} > 0 \ \exists \ \mathbb{N} \in \mathbb{R}_+ \ \forall \ \text{n,m} \in \mathbb{N} \ \forall \ \text{x} \in \mathbb{D} : \mathbb{m} \geq \mathbb{n} \geq \mathbb{N} \ \Rightarrow \ | \sum_{k=n}^m \ g_k(x) | < \epsilon.$$

Bem:Seien $f_n(z)$: $M \rightarrow C$ $n \in \mathbb{N}$, gegeben. $\sum_{n=1}^{\infty} f_n(z)$ konvergiert gleichmäßig uf M

$$\Leftrightarrow \ \forall \ \epsilon > 0 \ \exists \ n_0 = n_0(\epsilon) \ (\text{unabhängig von } z \in M) \ \text{mit} \ \left| \sum_{v=m+1}^n f_v(z) \right| < \epsilon \ \forall \ n > m \geq n_0(\epsilon) \ \text{und}$$

 \forall z \in M. Man wende S4.5.1 auf $F_n(z) := \sum_{v=1}^n f_v(z)$ n \in N, an.

S4.2.5(2361) Majorantenkriterium von Weierstrass Vor:Sei D \subset K (z.B. R, C) und f_n:D \to C für n \in N gegeben.

Sei
$$|f_n(z)| \le a_n \ \forall \ n \in \mathbb{N} \ \& \ \forall \ z \in D \ \& \sum_{n=1}^{\infty} \ a_n < \infty$$
.

Aussage: $\sum_{n=1}^{\infty} |f_n(z)|$ und $\sum_{n=1}^{\infty} f_n(z)$ sind gleichmäßig auf M konvergent.

Andere Formulierung:

$$\text{Vor:} (f_n) \text{, } f_n \text{: } I \rightarrow \textbf{R} \ \forall \ n \in \textbf{N} \text{, } (a_k)_{k \in \textbf{N}} \geq 0 \text{, } \star \sum_{k=1}^{\infty} \ a_k < \infty \text{, } \star \star \ |f_k(x)| \leq a_k \ \forall \ x \in \textbf{I} \ \forall k \in \textbf{N} \text{.}$$

Aussage: $\sum_{k=1}^{\infty} f_k(x)$ ist gleichmäßig konvergent.

4.3(2400) Stetige Funktionen

Im Folgenden betrachten wir Funktionen auf einem meist fest gewählten Definitionsbereich $D \subset K$, sowie einen weiteren Punkt $x_0 \in D$. Der für uns wichtigste Fall ist der, wenn D ein Intervall in R und x_0 ein Punkt im Inneren des Intervalls oder einer der Randpunkte ist, aber meist spielt die genaue Art von D und x_0 keine Rolle.

 $D\rightarrow K$, z_0 Häufungspunkt von D, $D\subset K$,

$$\begin{split} \lim_{z \to z_0} f(z_0) = & y_0 \iff \forall \ \epsilon > 0 \ \exists \ \delta_\epsilon \colon \ | \, f(z) - \underbrace{\mathcal{Y}_0}_{f(z_0)} \mid < \epsilon \ \forall \ z \in_{\bigcup_{\delta_\epsilon}} (z_0) \cap D \iff \\ \forall \ (z_n) \text{,} \ (z_n) \in D \backslash \{z_0\} \text{,} \ z_n \to z_0 \ \text{gilt:} \ f(z_n) \to y_0 \end{split}$$

Wir betrachten hauptsächlich reellwertige Funktionen aus einem Intervall

D4.3.1 (2400)

Sei $D \subset \mathbb{R}$. Dann heißt f: $D \to \mathbb{R}$, stetig im Punkt $x_0 \in D: \Leftrightarrow$

 $\forall \ \mathcal{E} > 0 \ \exists \ \delta > 0 : f(x) \in U^{\mathcal{E}} (f(x_0)) \ \forall \ x \in D \cap U_{\delta}(x_0) \ \text{oder "aquivalent...}$

*** $(\forall \epsilon > 0 \; \exists \; \delta > 0 \; \text{mit} \; | \; f(x) - f(x_0) | < \epsilon \; \forall \; x \in D \; \text{mit} \; | \; x - x_0 | < \delta)$. f heißt stetig auf A \subset D: \Leftrightarrow f ist in jedem $x_0 \in$ A stetig.

Bem:Ist $x_0 \in D \cap D'$, so ist f stetig in $x_0 \Leftrightarrow \exists \lim_{x \to x_0} f(x) = f(x_0)$.

Für $a,b \in \mathbb{R}$, a < b heißt $f:[a,b] \rightarrow \mathbb{R}$ linksseitig stetig in einem

Punkt $x_0 \in (a,b]$, wenn $\lim_{x \to x_0} f(x) = f(x_0)$

Analog wird die rechtsseitige Stetigkeit definiert. Offenbar ist f stetig an einer Stelle $x_0 \in (a,b)$, wenn es dort sowohl rechts-, als auch linksseitig stetig ist.

Wir nennen f auch stückweise stetig, wenn f bis auf endlich viele Ausnahmestellen $x_j \in [a,b]$ stetig ist und wenn an diesen Stellen x_j noch die einseitigen Grenzwerte existieren, d.h., wenn alle Unstetigkeitsstellen Sprungstellen sind. Es ist nicht schwer, zu zeigen,

dass eine auf [a,b] stückweise stetige Funktion dort beschränkt ist.

D4.3.1'(2401) komplexe Mengen

Sei M \subset C. Dann heißt f: M \rightarrow C stetig im Punkt $z_0 \in$ M: \Leftrightarrow

 $\forall \epsilon > 0 \; \exists \; \delta > 0 : f(z) \in U^{\epsilon} (f(z_0)) \; \forall \; z \in M \cap U_{\delta}(z_0).$

f heißt stetig auf A \subseteq M: \Leftrightarrow f ist in jedem z_0 \in A stetig.

Bem:a) Isolierter Pkt von D: $\exists \rho > 0$: $|z-z_i| \ge \rho \quad \forall z \in D \setminus \{z_i\}$.

Ist $z_0 \in M$ isolierter Punkt von M, so ist f in z_0 stetig, weil (***)gilt, sofern $\delta \leq \rho$.

Andere Formulierung:

 \forall $z_i \in D$ gilt (***) sofern $\delta \leq \rho$, d.h. jede auf D definiert Funktion ist stetig in allen isolierten Punkten

b) Ist $z_0 \in M \cap M'$, so ist f stetig in $z_0 \Leftrightarrow \exists \lim_{z \to z_0} f(z) = f(z_0)$.

Ist f in z_0 nicht stetig, so heißt f in z_0 eine Unstetigkeitsstelle von f.

c) Sei $f: D \to K$ stetig in $x_0 \in D$. Beachte, dass (***) trivialerweise richtig bleibt, wenn wir δ verkleinern; insofern ist δ durch ϵ nie eindeutig festgelegt. Es genügt aber zum Nachweis der Stetigkeit für jedes $\epsilon>0$ ein (möglicherweise sehr kleines) $\delta>0$ zu finden, für welches (***) gilt. Wir nennen manchmal ein solches δ auch ein zu ϵ gehörendes δ .

Andere Formulierung:

Sei eine Funktion $f:D\to K$ gegeben. Wir sagen, dass f in einem Punkt $x_0\in D$ stetig ist, wenn folgendes gilt:

(***) $\forall \epsilon > 0 \exists \delta > 0 \forall x \in D: |x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \epsilon$

Falls f in jedem Punkt von D stetig ist, sagen wir kurz: f ist auf D stetig.

Andere Formulierung:

Eine Funktion $f:D\rightarrow C$, heißt stetig in

(.) einem Punkt $z_0 \in D$, wenn $\lim_{z \to z_0} f(z) = f(z_0)$ ($\lim_{x \to x_0}$ existiert), d.h.

$$_{n}z_{n}\underset{n\to\infty}{\longrightarrow}z_{0}$$
" \Rightarrow f(z_{n}) $\underset{n\to\infty}{\longrightarrow}$ f(z_{0}) oder $\underset{z\to z_{0}}{\lim}$ f(z) = f($\underset{z\to z_{0}}{\lim}$ z)

Herleitung dieser Def aus (***) siehe S4.3.3

Eine Funktion $f: I \to \mathbb{R}$, heißt stetig in (..)einem Teilintervall $J \subset I$, falls f in jedem Punkt $x_0 \in J$ stetig ist Bem:(.)Es gilt f ist stetig in $x_0 \in I$

- \Leftrightarrow \forall ϵ >0 \exists δ_{ϵ} >0:|f(x)-f(x₀)|< ϵ \forall x \in U_s (x₀) \cap I
- $\Leftrightarrow \ \forall \ \epsilon {>} 0 \ \exists \ \delta_{\epsilon} {>} 0 \ \text{f($U_{\delta_{\epsilon}}$ } (x_{0}) \cap \text{I)} {\subset}_{U_{\epsilon}} \ \text{(f(x_{0}))}$
- (..) Für Funktion $f:_{U_{\delta}}(z^*)\to \mathbb{C}$ $(z^*\in \mathbb{C},\ \delta>0)$ können wir völlig analog Stetigkeit von f in $z_0\in:_{U_{\delta}}(z^*)$ definieren

Wir sagen, dass f auf D einer Lipschitzbedingung genügt, falls eine Konstante L \in R $_+$ existiert, sodass $|f(x_0)-f(x_1)| \le L|x_0-x_1| \ \forall \ x_0, x_1 \in D$. Jedes solches L heißt auch Lipschitzkonstante für f (auf D) \sqrt{x} (im Nullpkt senkrecht) erfüllt Lipschitzbedingung nicht

Bez:a)Es seien eine Funktion $f:I \to \mathbb{R}$ und eine Menge $M \subset I$ Gegeben. Dann bezeichnen wir mit

(.) $\sup_{\mathbf{x} \in \mathbb{M}} \mathbf{f}(\mathbf{x}) := \begin{cases} \sup(f(M), falls\ f(M)\ nach\ oben\ beschränkt\ ist \\ \infty, falls\ f(M)\ nicht\ nach\ oben\ beschränkt\ ist \end{cases}$ (..) $\inf_{\mathbf{x} \in \mathbb{M}} \mathbf{f}(\mathbf{x}) := \begin{cases} \inf(f(M), falls\ f(M)\ nach\ unten\ beschränkt\ ist \\ -\infty, falls\ f(M)\ nicht\ nach\ unten\ beschränkt\ ist \end{cases}$

das Supremum bzw das Infimum von f auf M.

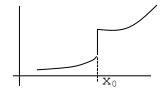
Falls existent: $\max_{x \in \mathcal{X}} f(x) := \max_{x \in \mathcal{X}} f(M)$ das Maximum,

 $\min f(x) := \min f(M)$ das Minimum von f auf M

Bem: Ist $f: I \rightarrow R$ nicht stetig in $x_0 \in I$, so bezeichnet man x_0 auch als Unstetigkeitsstelle von f, z.B.

(.) Sprungstellen

$$\lim_{x \to x_0^-} \neq \lim_{x \to x_0^+}$$



(..)Oszillationsstellen

 $\lim_{x \to \infty} f(x)$ existiert nicht

$$(...) f(x) = \begin{cases} 1, x \in Q \cap [0,1] \\ 0, x \in \mathbb{R} \cap [0,1] \end{cases}$$

ist in keinem Punkt $x_0 \in [0,1]$ stetig

b) Wir sagen $f:I \rightarrow R$ ist stetig, wenn f stetig auf I ist.

S4.3.1(2404) Geg sei ein beliebige Menge D⊂K sowie Funktionen $f_n, g_k: D \rightarrow K \forall n, k \in \mathbb{N}$. Dann gilt

a) Sind alle f_n in einem Punkt $x_0 \in D$ stetig und ist die Funktionenfolge (f_n) auf D gleichmäßig konvergent, so ist die Grenzfunktion f ebenfalls stetiq in x_0 .

Andere Formulierung:

Vor: (.) Sei $M \subset C'$ $f_n: M \to C$, $n \in \mathbb{N}$, auf M gleichmäßig konvergent gegen $f: M \to C$.

(...) \forall n∈N sei f_n(z) stetig in z₀∈M (bzw auf M).

Beh: f(z) ist in z_0 (bzw. auf M) stetig

b) Sind alle g_{k} in einem Punkt $x_{0}\mbox{\in}D$ stetig und ist die

Funktionenreihe $\sum_{k=1}^{\infty}$ g_k auf D gleichmäßig konvergent, so ist die Grenzfunktion f ebenfalls stetig in x_0 .

S4.3.2(2409) Expotential-, Trigonometrische, hyperbolische Funktionen sind stetig auf ganz C.

S4.3.3(2410) Folgenstetigkeit

 $f=D \rightarrow K$ stetig in $z_0 \in D \Leftrightarrow f \ddot{u}r$ jede Folge

 $(z_n) \text{ in D mit } z_n \underset{n \to \infty}{\overset{\longrightarrow}{\longrightarrow}} z_0 \text{ gilt auch } f(z_n) \underset{n \to \infty}{\overset{\longrightarrow}{\longrightarrow}} f(z_0) \text{.}$

S4.3.4(2410) Rechenregeln für Stetigkeit

Beh:1.) Vor: $M \subset R$, f,g mit $M \to R$, stetig im Punkt $x_0 \in M$.

Aussage: $f(x_0) > a(< a bzw. \neq a) \Rightarrow$

 $\exists \delta > 0 \text{ mit } f(x) > a(\langle a bzw. \neq a) \forall x \in M \cap U_{\delta}(x_0).$

2.) Vor: $M \subset K$, f,g mit $M \to K$, stetig im Punkt $x_0 \in M$.

 $\alpha f + \beta g$ stetig in $x_0 \ \forall \ \alpha, \beta \in R \ (bzw \in K)$,

fg stetig in x_0 ,

f/g stetig in x_0 , falls $g(x_0) \neq 0$ (und folglich $g(x) \neq 0$ in $U_\delta(x_0) \cap M$).

3.) Vor: $f:D\to D_1$ stetig in $x_0\in D$ und $g:D_1\to K$ stetig in $x_0\in D$ bzw $f(x_0)\in D_1$. Hintereinanderausführung $g\circ f:D\to K$ stetig in x_0 .

Andere Formulierung:

f: $M \rightarrow R$ stetig in $x_0 \in M$ h: $f(M) \rightarrow R$ stetig in $f(x_0) \Rightarrow$

 $(h \circ f)(x) = h(f(x))$ stetig in x_0

Bew: Aus Rechenregeln für Folgen und S4.3.2

4.) $\sum_{v=0}^{n} a_v(z-z_0)^v$, R>0 ist stetig \forall z: $z \in U_R(z_0)$

5.) Vor: $\stackrel{M}{\smile}$ kompakt, $\mathbf{f_n} : M \rightarrow R$ stetig auf M $\forall n \in N$,

 $f_{n}\left(z\right)\nearrow f(z)\quad (n{\rightarrow}\infty)\;\forall\;\;z\text{, f:}\;M{\rightarrow}\;R\;\;\text{stetig auf}\;M\text{.}$

Aussage $(z) \rightarrow f(z)$

S4.3.5 (2450)

Vor: Die PR f(z):= $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ habe KR R>0.

Aussage: f(z) ist stetig in jedem Punkt $U_R(z_0)$.

S4.3.6(2455) Identitätsssatz für Potenzreihen

1.) Vor: $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$, $z \in U_R(z_0)$ mit KR, R>0 gegeben.

Beh: Für $z_1 \in U_R(z_0)$: $\lim_{z \to z_1} f(z) = f(z_1)$

2.) Eindeutigkeitssatz für Potenzreihen

Vor: $f(z) := \sum_{k=0}^{\infty} a_k (z-z_0)^k$, $\phi(z) := \sum_{k=0}^{\infty} b_k (z-z_0)^k$ haben KR, R>0.

 \exists eine Folge $(z_n) \subset U_R(z_0) \setminus \sum_{e \in U_R(z_0)}^* \text{mit } z_n \xrightarrow[n \to \infty]{} z_0^* \in U_R(z_0) \& f(z_n) = \varphi(z_n) \forall n \in \mathbb{N}$

Beh: $a_k = b_k \ \forall \ k \in \mathbb{N}_0$ und damit $f(z) = \varphi(z) \ \forall \ z \in U_R(z_0)$.

Bem: (.) Polynome sind spezielle Potenzreihen

(..) Koeffizientenvergleich Bsp $(1+x)^n (1+x)^n = (1+x)^{2n}$

(...) Gilt $f(z_n) = 0 \quad \forall \quad n \quad z_n \xrightarrow[n \to \infty]{} z_0^* \Rightarrow f(z) \equiv 0$

(....) Nullstellen von sin, cos, sinh, cosh können sich in keinem Punkt von ${\bf C}$ häufen.

4.4(2500) Hauptsätze über stetige Funktionen

S4.4.1(2500) **Z**wischenwertsatz (ZWS)

Vor:Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ stetig auf I, a,b \in I, a<b. Beh:1.) f(a) < y < f(b) : \forall y \exists mindestens ein $x \in [a,b]$ mit f(x) = y. Andere Formulierung:

Sei $f:[a,b]\to R$ stetig. Sei ferner y eine beliebige Zahl mit $f(a) \le y \le f(b)$ oder $f(b) \le y \le f(a)$. Dann gibt es ein $x \in [a,b]$ mit f(x) = y.

Bem: Falls $f:[a,b] \to \mathbb{R}$ stetig und f(a) < 0 und f(b) > 0, so existiert mindestens eine Nullstelle $\xi \in (a,b)$ von f.

2.) J:=f(I) ist ein Intervall $\subset \mathbb{R}$.

D4.4.1(2501) Sei $D \subset K$ und sei $f:D \rightarrow K$.

Ein Punkt $x_0 \in D$ heißt Nullstelle von f, falls $f(x_0) = 0$ ist.

Bem:Sei $f:[a,b] \to \mathbb{R}$ stetig und seien $f(a) \ge 0$ und $f(b) \le 0$ oder umgekehrt. Dann hat f mindestens eine Nullstelle auf [a,b] und eine dieser Nullstellen kann mit einem der folgenden Verfahren näherungsweise berechnet werden:

1. Bisektionsmethode

Falls f(a)=0 oder f(b)=0, ist nichts mehr zu tun. Andernfalls seien $a_0=a,b_0=b$. Dann haben $f(a_0)$ und $f(b_0)$ unterschiedliche Vorzeichen und somit ist $f(a_0)f(b_0)<0$. Sei jetzt $x=(a_0+b_0)/2$. Falls f(x)=0 ist, haben wir eine Nullstelle gefunden. Falls nicht, kann $f(a_0)f(x)<0$ sein und in diesem Fall seien $a_1=a_0$, $b_1=x$ gesetzt. Im anderen Fall gilt $f(b_0)f(x)<0$ und wir setzen $a_1=x$, $b_1=b_0$. In beiden Fällen ist $a_1< b_1$ und $f(a_1)f(b_1)<0$.

Sind allgemein schon Zahlen a_n , b_n mit $a_n < b_n$ und $f(a_n) f(b_n) < 0$ gegeben, so sei jetzt $x = (a_n + b_n)/2$. Wenn f(x) = 0 ist, stoppen wir das Verfahren. Wenn $f(a_n) f(x) < 0$ ist, seien $a_{n+1} = a_n$, $b_{n+1} = x$ gesetzt. Wenn dagegen $f(b_n) f(x) < 0$ ist, seien $a_{n+1} = x$, $b_{n+1} = b_n$ gesetzt. Insgesamt sehen wir, dass dieser Algorithmus entweder nach endlich vielen Schritten eine Nullfolge von f findet oder aber 2 Zahlenfolgen (a_n) , (b_n) liefert, für die immer $a_n < b_n$ und $f(b_n) f(x) < 0$ ist, so dass nach dem Zwischenwertsatz eine Nullstelle von f im Intervall (a_n, b_n) liegen muß. Nach Konstruktion ist (a_n) wachsend und (b_n) fallend, und $b_n - a_n = (b-a) 2^{-n}$. Also folgt Konvergenz beider Folgen gegen denselben Grenzwert a, und dieser muss dann Nullstelle von f sein. (siehe auch oben)

2.Regula Falsi

Wir gehen genau wie bei der Bisektionsmethode vor, nur setzen wir in jedem Schritt x gleich der Schnittstelle der Geraden durch $(a_n, f(a_n))$ und $(b_n, f(b_n))$ mit der x-Achse, d.h. $x=(a_n f(b_n)-b_n f(a_n))/(f(b_n)-f(a_n))$.

Verfahren mit schnellerer Konvergenz gegen die Nullstelle siehe später Newtonverfahren.

S4.4.2 (2510)

a) Vor: $f:I \rightarrow R$ stetiq.

Beh: f injektiv ⇔ f streng monoton. (genau dann injektiv, wenn...)

- b) $X \subseteq \mathbb{R}$, $K \subseteq X$, K kompakt, f stetig auf $K \Rightarrow f(K)$ kompakt (das stetige Bild kompakter Mengen ist kompakt
- S4.4.3(2530) Umkehrfunktion und Stetigkeit
- Vor: \bullet Intervall I⊂R,
 - f:I \rightarrow R stetig auf I, d.h. J=f(I) $\Longrightarrow_{ZWS4.4.1Bem2.1}$ J:=f(I) ein Intervall.
 - • f: $I \rightarrow R$ streng monoton

Aussage: Auf dem Intervall J=f(I) gilt

- \bullet Zu f \exists im gleichen Sinn wie f streng monotone f⁻¹
- • Zu f \exists stetige f⁻¹ auf dem Intervall J=f(I)

(2531) Korollar S4.4.2

- (.) log x: $(0,\infty) \to R$ ist stetig und streng monoton wachsend Bew: $e^x : R \to (0,\infty)$ bijektiv, \uparrow und stetig $\underset{S4.4.3}{\Longrightarrow}$ Beh
- (...) sinh x: $R \rightarrow R$ ist \uparrow und stetig, $f(R) \rightarrow R$ d.h. er hat Umkehrfunktion: Arsinh: $R \rightarrow R \uparrow$ und stetig.
- (...) cosh $x:[0,\infty)\to[1,\infty)$ ist \uparrow und stetig und surjektiv, seine Umkehrfunktion Arcosh $x:[1,\infty)\to[0,\infty)$ ist \uparrow und stetig.

S4.4.4 (2532)

- a) $\sin x>0 \forall x \in (0,2]$
- b) $\cos x \text{ ist im Intervall } [0,2] \downarrow$
- #c) cos x ist im Intervall $[0,\pi]$ \downarrow
- d) Die Funktion cos besitzt eine kleinste positive Nullstelle x_0 , welche im Intervall (1,2) liegt. Es gilt $1-\frac{x^2}{2} < \cos x < 1-\frac{x^2}{2} + \frac{x^4}{4!}$ für $0 < x \le 2$.
- e) cos $x>0 \forall x \in [0, \pi/2)$
- **D4.4.2** (2535) Die reelle Zahl 2* $\frac{x_0}{aus S4.4.4d}$ heißt π

Bem:(.) π ist eine reelle transzendente Zahl, π =3,14159265358979.

- (..) Es gilt auf (0,2] (analoger Bew wie oben:
- α) x- $\frac{x^3}{3!}$ <sin x<x \Rightarrow sin $\pi/2>0$ und ferner (Additionsth):
- β) $\sin (\pi/2+\pi/2) = \sin(\pi) = 2\sin(\pi/2)\cos(\pi/2) = 0$ da $\cos(\pi/2) = 0$
- y) sin (π/2)=1, (da (cos²(π/2)±sin²(π/2)=1, sinπ/2 $\frac{1}{\alpha}$ 0) δ) cosπ=cos²(π/2) -sin²(π/2)=-1

Andere Formulierung, Definition und Satz

cos hat im Intervall [0,2] genau 1 Nullstelle ξ , π =2 ξ , $\cos \frac{\pi}{2}$ =0, $\sin \frac{\pi}{2}$ =1

- **S4.4.5**(2535) $\exp(i*\frac{\pi}{2})=i$, $\exp(i*\pi)=-1$, $\exp(i*\frac{3\pi}{2})=-1$, $\exp(2\pi*i)=1$
- **S4.4.6**(2537) Periodizitäten und Idenditäten der trigonometrischen Funktionen

Es gilt für $x \in \mathbb{R}$ bzw $z \in \mathbb{C}$:

- a) $\sin(x+\pi/2) = \cos x$, $\sin(x+\pi) = -\sin x$, $\cos(x+\pi/2) = -\sin x$, $\cos(x+\pi) = -\cos x$
- b) $\sin(x+2\pi)=\sin x$, $\cos(x+2\pi)=\cos x$, wir sagen dann, dass der Sinus und der Cosinus " 2π periodisch" sind, dabei ist $\lambda=2\pi$ die kleinste positive Zahl mit dieser Periodizitätseigenschaft und wir nennen diese Zahl die Periodenlänge.
- c) Aufgrund dieser Überlegungen ist sin $x=0 \Leftrightarrow x=k\pi$ mit $k\in \mathbb{Z}$ und die Periodenlänge 2π . Analog für den Cosinus.
- d) $e^z = e^{z+2k_{\pi^i}} \forall k \in \mathbb{Z}$
- e) $\sin x=0 \Leftrightarrow x=k\pi \text{ mit } k\in \mathbb{Z}$, $\sin x>0$ auf $(0,\pi)$, $\cos x=0 \Leftrightarrow x=k\pi+\pi/2 \text{ mit } k\in \mathbb{Z}$, $\cos x>0$ auf $(-\pi/2,\pi/2)$, $(-1)^k\cos x>0 \quad \forall x\in ((k-\pi/2)(k-\pi/2))$
- f) Wertetafel

f	Х	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin	Х	0	1/2	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1
cos	Х	1	$\sqrt{3}$ / 2	$\sqrt{2}$ / 2	1/2	0

Bem: (.) Sinus ist eine ungerade Funktion \Rightarrow sin x<0 auf (- π ,0) cosx<0 auf (π /2,3 π /2).

- (..) Sinus und Cosinus haben auch im Komplexen nur die oben genannten reellen Nullstellen, damit ist auch Definitionsbereich von tan z und cot z Klar.
- g) Aus obigen Eigenschaften und S4.4.4:

cos:
$$[0,\pi] \rightarrow [-1,1] \downarrow$$
, sin: $[-\frac{\pi}{2},\frac{\pi}{2}] \rightarrow [-1,1] \uparrow$,

tan:
$$[-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow R \uparrow$$
, cot: $[0, \pi] \rightarrow R \downarrow$

obige Funktionen sind surjektiv und streng monoton, deshalb

D4.4.3(2540) Umkehrfunktionen zu cos, sin ,tan und ctan sind die Arcusfunktionen

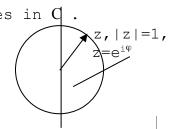
arccos:
$$[-1,1] \rightarrow [0,\pi]$$
, arcsin: $[-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$,

arctan: $R \rightarrow (0,\pi]$ arcctan: $R \rightarrow (0,\pi]$

Bem: $S4.4.3 \Rightarrow Die Arcusfunktionen sind streng monoton und auf ihrem Definitionsbereich stetig$

S4.4.7(2541) Parametrisierung des Einheitskreises in C . Zu $z \in C$ mit |z|=1 existiert genau ein

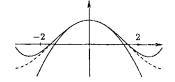
 $\varphi \in (-\pi, \pi]$ mit $z=e^{i\varphi}$.



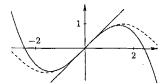
Graphen hig. Tunkhovan

Fun Ocx < 2 gl

$$4 - \frac{x}{2} \leq \cos x \leq 1 - \frac{x}{2} \cdot \frac{x}{4}$$

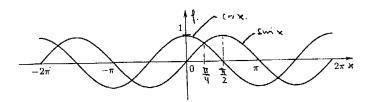


Einschließung des Cosinus



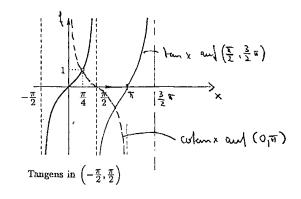
Einschließung des Sinus

Graphen: Smus, Cosinus

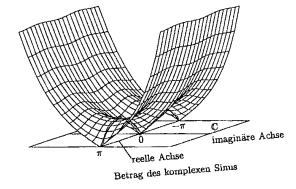


Cosinus und Sinus auf IR

Tangun, Colangens



Bun: Du homplex Somes is unboder,



Bem:Die stetige und streng monoton wachsende Umkehrfunktion $f^{-1}\colon R\to R$ von sinh heißt Area sinus hyperbolicus. Bez:Arsinh

S4.4.8(2541) Für $x \in R$ ist die Expotentialfunktion e* streng monoton Wachsend, nimmt jedes $y \in R_+$ als Wert an und ist bijektiv #Bem:

y=f(x)=e^x ist bijektiv nach S4.4.8 $\underset{ZWS4.4.1Bem2.)}{\Longrightarrow}$ Umkehrfkt f⁻¹(y):=x

Umkehrfunktion $f^{-1}(y) = f^{-1}(e^x)$ ist im gleichen Sinn wie $f(x) = e^x$ streng monoton, d.h. streng monoton wachsend.

D4.4.4(2544) Logarithmus

Die streng monoton wachsende Umkehrfunktion zu $\exp: R \to R_+$ heißt der natürliche Logarithmus und wir schreiben $\log: R_+ \to R$, $x = \exp(\log x)$. Bem:

- y=log x ist per Def äquivalent mit $x=e^y$.
- • Für $a \in \mathbb{R}_+$ & $b \in \mathbb{C}$ setzen wir noch $a^b = e^{b \log a}$. $\# (\underbrace{e^{\log a}}_a)^b = a^b \#$
- ● D4.4.4 $\underset{a \in R_+, b \in R}{\Rightarrow}$ a^b∈R₊ & log a^b=b*log a \forall a∈R₊, b∈R, beachte aber, dass im Allgemeinen a^b eine komplexe Zahl ist, und deshalb log a^b nicht definiert ist.

D4.4.5(2563) Gleichmäßige Stetigkeit

Sei $M \subset K$, $f: M \to K$ heißt gleichmäßig stetig auf $M: \Leftrightarrow \forall \epsilon > 0 \ \exists \ \delta_{\epsilon} > 0 \ \forall \ z_1, z_2 \in M: \ |z_1 - z_2| < \delta_{\epsilon} \Rightarrow \ |f(z_1) - f(z_2)| < \epsilon$

Erläuterung: Egal,welche Punkte $z_1,z_2\in M$ gewählt werden,muß zu ϵ immer $|z_1-z_2|<\delta_\epsilon$ gelten, also "nur 1 Wert δ_ϵ für ganz M". Unterschied zu stetig siehe Bsp 2

Im 2. Bsp immer das gleiche δ_ϵ , von x_0 unabhängig

Bem:f:M \rightarrow K ist gleichmäßig stetig auf M \Leftrightarrow \forall $\epsilon > 0$ \exists $\delta = \delta(\epsilon) > 0$ (δ unabhängig von z \in M) mit: \forall $z_0 \in$ M, \forall $z \in$ M \cap U $_\delta(z_0)$ gilt $f(z) \in$ U $_\epsilon(z_0)$.

S4.4.10 (2564)

Vor: Sei $M \subset K$ & M kompakt(d.h. abgeschl& beschränkt) f: $M \to K$ stetig auf M. Aussage: f ist gleichmäßig stetig auf M.

Bem:f:[a,b] $\rightarrow R$ stetig \Rightarrow f gleichmäßig stetig f([a,b])=[min f, max f]

S4.4.11(2565) Vor: $M \subset K$ & M beschränkt, f: $M \to K$ gleichmäßig stetig auf M.

Beh:f(M) ist beschränkt, d.h. |f| ist auf M beschränkt

Zusatz: f läßt sich eindeutig stetig und gleichmäßig stetig von M auf $\overline{\rm M}$ (kompakt) fortsetzen. Damit ist f auf M beschränkt.

Andere Formulierung (nur für R)

Vor: Intervall I, $f:I \rightarrow R$ gleichmäßig stetig auf M.

Aussage: Falls I beschränkt ist, ist auch f(I) beschränkt

S4.4.12 (2567)

 $f:I \rightarrow R$ gleichmäßig stetig auf I $\stackrel{\Rightarrow}{!}$ f stetig auf I

Bem: (.) Stetigkeit $\overset{\Rightarrow}{\text{nicht}}$ gleichmäßige Stetigkeit (f(x)=1/x auf (0,1), δ_ϵ hängt von x₀ ab)

(..) Falls I kompakt und stetig $\underset{S4.4.7}{\Longrightarrow}$ f(I) kompakt, also beschränkt

4.5(2600) Gleichmäßige Konvergenz von Funktionsfolgen

siehe auch unter 4.2

weiter gilt:

D4.5.1 (2600)

Geg sei eine beliebige Menge D, sowie Funktionen $f_n, g_k: D \rightarrow K \ \forall \ n, k \in \mathbb{N}$. Dann nennen wir \bullet (f_n) eine Funktionenfolge auf D $(z.B.\ f_n(x)=x^n\ auf\ -2 < x < 3)$ und

•• $\sum_{k=1}^{\infty}$ g_k eine Funktionenreihe auf D.

(z.B.
$$\sum_{k=1}^{\infty} g_k = \sum_{k=1}^{\infty} z^n \text{ auf } \{z \in \mathbb{C}: -2 < |z| < 5\}$$
)

- Die Funktionenfolge (f_n) heißt auf D punktweise konvergent, falls für jedes z \in D die Folge ($f_n(z)$) konvergent ist. Ist dies der Fall, so heißt $f:D\to K$, mit $f(z)=\lim_{n\to\infty} f_n(z)$ \forall z \in D, die Grenzfunktion der Folge. (z.B. $f_n(x)=x^n$ punktweise konvergent auf $0\le x\le 1$)
- Analog heißt die Funktionenreihe $\sum_{k=1}^{\infty}$ g_k auf D punktweise konvergent, falls \forall z \in D die Reihe $\sum_{k=1}^{\infty}$ $g_k(z)$ konvergent ist und die Grenzfunktion f

ist dann durch $f(z) = \sum_{k=1}^{\infty} g_k(z) \quad \forall z \in D \text{ gegeben.}$

(z.B. $\sum_{k=1}^{\infty} z^{k} = \frac{1}{1-z}$ punktweise konvergent auf {z \in C:|z|<1})

- Die Funktionenfolge (f_n) heißt auf D gleichmäßig konvergent, falls sie punktweise konvergiert (gegen die Grenzfunktion f) und falls weiter gilt: $\forall \ \epsilon > 0 \ \exists \ N \in \mathbb{R}_+ \ \forall \ n \in \mathbb{N} \ \forall \ z \in \mathbb{D} : n \geq \mathbb{N} \ \Rightarrow \ |f_n(z) f(z)| < \epsilon.$ (z.B. $f_n(z) := z^n$, $n \in \mathbb{N}$, konvergiert gleichmäßig auf $U_r(0) \ \forall \ 0 < r < 1$ gegen f(z) = 0,) und analog heißt
- •• die Funktionenreihe $\sum_{k=1}^{\infty}$ g_k auf D gleichmäßig konvergent, falls sie punktweise konvergiert (gegen die Grenzfunktion f) und falls

 $\forall \ \epsilon > 0 \ \exists \ \mathbf{N} \in \mathbb{R}_+ \ \forall \ \mathbf{n} \in \mathbb{N} \ \forall \ \mathbf{z} \in \mathbb{D} : \mathbf{n} \geq \mathbf{N} \ \Rightarrow \ | \ \sum_{k=1}^n \ \mathbf{g}_k(\mathbf{z}) - \mathbf{f}(\mathbf{z}) | < \epsilon.$

 $(\sum_{k=1}^{\infty} x^k/k^2 \text{ gleichmäßig konvergent auf [0,1] siehe A4.5.3)}.$

Also ist die gleichmäßige Konvergenz der Funktionenreihe $\sum_{k=1}^{y}$ g $_k$ äquivalent mit der gleichmäßigen Konvergenz der Folge ihrer Partialsummenfolge

Aus der gleichmäßigen Konvergenz folgt die punktweise Konvergenz, aber nicht umgekehrt.

Andere Formulierung

Gleichmäßige Konvergenz von Funktionsfolgen

Vor: $M \subset R$ oder $M \subset C$, $f_n: M \to C$, $n \in N$

Aussage:Die Funktionsfolge $(f_n)_{n=1}^{\infty} = (f_n(z))_{n=1}^{\infty}$ konvergiert gleichmäßig auf M gegen $f(z):M \rightarrow C: \Leftrightarrow$

 $\forall \ \epsilon > 0 \ \exists \ n_0 = n_0\left(\epsilon\right) \ (\text{unabhängig von } z \in M) \ \text{mit} \ |f_n\left(z\right) - f\left(z\right)| < \epsilon \ \forall \ n \geq n_0\left(\epsilon\right) \ \forall \ z \in M.$

S4.5.1 (2602)

• Funktionenfolge Cauchy-Kriterium für gleichmäßige Konvergenz Vor:Sei $M \subset R$ oder $M \subset C$, $f_n: M \to C$ für $n \in N$ gegeben.

Beh: $(f_n(z))_{n=1}^{\infty}$ konvergiert gleichmäßig auf M (gegen Funktion $f(z):=M\to \mathbb{C}$) $\Leftrightarrow \forall \varepsilon > 0 \exists n_0 = n_0(\varepsilon) \forall z \in M(d.h. unabhängig von z \in M) mit <math>|f_n(z) - f_m(z)| < \varepsilon \forall n, m \ge n_0(\varepsilon)$

ullet Die Funktionenreihe $\sum_{k=1}^{\infty}$ g_k ist genau dann auf D gleichmäßig konvergent,

wenn $\forall \ \mathcal{E} > 0 \ \exists \ \mathbb{N} \in \mathbb{R}_+ \ \forall \ \text{n,m} \in \mathbb{N} \ \forall \ \text{x} \in \mathbb{D}: \mathbb{m} \geq \mathbb{n} \geq \mathbb{N} \ \text{mit} \ |\ \sum_{k=n}^m \ g_k(\mathbf{x})| < \epsilon.$

Andere Formulierung:

Eine Funktionenreihe konvergiert glm auf I genau dann, wenn

$$\forall \ \epsilon > 0 \ \exists \ n_1 = n_{1(\epsilon)} : |\sum_{k=n}^{n+p} \ f_k(\mathbf{x})| < \epsilon \ \forall \ n > n_1(\epsilon) \ \forall \ p > 1 \ \text{und} \ \mathbf{x} \in \mathbf{I}$$

S4.5.2(2604) Majorantenkriterium von Weierstrass

 $\text{Vor:} \texttt{M} \subset \textbf{R} \text{ oder } \texttt{M} \subset \textbf{C}, \text{ } \texttt{f}_n : \texttt{M} \rightarrow \textbf{C} \text{ für } \texttt{n} \in \textbf{N}, \text{ } |\texttt{f}_n(\texttt{z})| \leq \texttt{a}_n \# (\in \textbf{R}_+) \# \forall \text{ } \texttt{n} \in \textbf{N} \text{ } \forall \text{ } \texttt{z} \in \texttt{M} \text{ } \& \sum_{n=1}^{\infty} \texttt{a}_n < \infty.$

 $\text{Aussage:} \sum_{n=1}^{\infty} \ |f_n(z)| \ \& \ \sum_{n=1}^{\infty} \ f_n(z) \ \text{sind gleichm\"{a}Big auf M konvergent.}$

S4.5.3 (2604) Vor: • • (f_n) : $f_n \in C(I)$ \forall $n \in \mathbb{N}$,

L4.5.1 Vor: Folge (f_n) , f_n : $[a,b] \rightarrow R$, $f_n \in C([a,b]) \forall n \in \mathbb{N}$. (C...stetige f) Aussage: (f_n) , gleichmäßig konv auf $[a,b] \Leftrightarrow$

 \forall konvergenten Folgen $(x_n) \in [a,b] \exists \lim_{n \to \infty} f_n(x_n)$

S4.5.4 (2609)

Vor:Sei M \subset R M kompakt, \forall n \in N $f_n:M\to R$ stetig auf M, \forall z \in M sei $f_n(z) \underset{n\to\infty}{\longrightarrow} f(z)$, $f:M\to R$ stetig auf M

Beh: $f_n(z) \underset{n \to \infty}{\Longrightarrow} f(z)$ gleichmäßig konvergent auf M